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Abstract

The bunch train cavity interaction is an accelerator physics problem,
for which a system-theoretic model is lacking. Modal analysis has been
used to characterize the system dynamics, exploiting the system’s sym-
metry. Correspondingly, control design has been done using classical
frequency-domain-based control. Several shortcomings of these meth-
ods are highlighted, all of which are remedied by a new time-domain,
system-theoretic model presented herein. The new formulation is a
periodic, discrete-time system, amenable to state-space control-design
methods.

1 Introduction

This paper is concerned with the dynamics and control of a circulating par-
ticle beam. We refer to it as the bunch train cavity interaction (BTCI)?, and
though ostensibly a control-theoretic problem, theory and practical design
have been largely the work of physicists, who have favored modal analysis
(MA). State-space methods have been ignored, and all of the existing feed-
back designs are exclusively via classical methods and ad hoc extensions.
It is not uncommon for current systems to be controlled by several nested
loops. This paper devlops a general state-space model and demonstrates
its utility in system analysis and control design. The next two paragraphs
qualitatively describe the bunch train cavity interaction problem; Figure 1
should serve as an aid.
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Figure 1: Bunches of charged particles encircle the storage ring and interact
with the cavity.

The circulating particle beam is comprised of bunches of particles (usu-
ally electrons or protons) of some nominal energy, each separated from the
others by distances that are several orders of magnitude larger than the
(average) bunch size. The bunches circulate along a nominal orbit, during
which they lose energy. This energy loss is compensated by a passive, high-
() resonant cavity magnet (or a group of them), which imparts energy to
each bunch as the bunch passes through it. The cavity is powered by an
external generator that supplies radio-frequency (rf) power at some nominal
level. There exists an equilibrium at which the nominal rf power makes up
for each bunch’s energy loss exactly, such that the bunches circulate about
their orbit forever.

However, perturbations to this system equlibrium may grow to instabil-
ity, or the damping rate may be too slow. The mechanism is the coupling
from the bunches to the cavity (or any other significant source of impedance):
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the bunch train acts as a (second) power input to the cavity (aside from the
generator), and thus each bunch indirectly affects its fellows. Feedback sys-
tems are often used to provide better system behavior. The control law
may incorporate information regarding the bunches’ energy (or a function-
ally related quantity) and/or information from the cavity. A typical control
lever is via the generator, i.e., modulating the rf incident to the cavity [1].
A further control lever (often used in parallel with the first) is obtained by
inserting a broadband kicker magnet in the nominal beam orbit, that, like
the cavity, imparts energy to each passing bunch. But unlike the cavity, this
actuator contributes a small, strictly corrective energy kick to each bunch
(2], [3]. Of the two control problems, the former is far more challenging,
as the plant consists of the entire bunch train with the cavity, while in the
latter, each bunch is treated as a separate plant.

In the following sections of this paper a mathematical description of
the bunch train cavity interaction is given (in section 2) that includes a
brief coverage of modal analysis. A state-space, system-theoretic plant and
control system model is then derived (in section 3). Simulation results are
presented (in section 4) for a low-order case.

2 Mathematical Formulation

In this section we present all of the necessary subsystem models of the
BTCI. With just the information presented here our new formulation can
be derived, as is done in section 3.

The simplest component of the overall system is the cavity. Although
spatially distributed, it is well modeled for the topic at hand by a lumped
transfer function [4]:

Ruw,s/Q (1)
82+ wrs/Q + w?’
where w; is the center frequency (on the order of rf), @ > 1 is the dimen-
sionless quality factor, and R is the resistance in Ohms. As mentioned in
section 1, there are two inputs to Z(s): the supplied rf power expressed in
current {Amps) and the bunch train itself. For the moment we assume that
the former is constant.

The bunch train is modeled as a (quasi-) periodic Dirac-impulse train.
[Each bunch is Gaussian shaped, but given the speed with which it passes
through the cavity (on the order of c), and moreover, with respect to Z(s),
it can be treated as a Dirac impulse 6(-).] Under a no-perturbation, strictly-
periodic condition, each bunch n = 1,..., N of charge ¢, passes through

Z(s) =



the cavity with a constant period T phased some T}, seconds after the first
bunch (7% := 0). That is,

N
it) = — Z dn Z 8 (t—pT —Tp) under no perturbations.  (2)
n=1 p

In reality, however, the bunches arrive early or late by no more than 7 «
ming 1 T, seconds, i.e., the impulses fire quasi-periodically. Let 7,[p] denote
the nth bunch’s pth arrival time deviation from nominal (jitter); hence the
true bunch train current is given by

h
i(t):'_ZQnZ(S(t_pT"Tn"Tn[p])' (3)

n=1 P

A convenient shorthand is to denote the argument of the above delta function
as
t—tnpi=t—pT + T, + 7,[p], (4)

and for convenience in indexing we allow ¢y, = pT — Tn + 7n[p — 1] (peri-
odicity).

The BTCI system is interesting from a system theory point of view be-
cause the jitter is itself driven by perturbations in the cavity’s voltage. This
is an inherent feedback mechanism whereby cavity voltage perturbations
drive and are driven by bunch phase perturbations. More precisely, for some
convenient we in the bandwidth of Z{(jw), let 8, [p] := w7y [p] denote the nth
bunch’s radian phase deviation on the pth arrival, and let 8 := maxy , |6, [p]|.
Similarly let e,[p] denote the bunch’s energy deviation (in volts). Defining
xn[p] = [0n[p], €n[p]] T, the bunch’s phase-energy dynamics are governed (to
first order) by the following difference equation Vn

xn[p + 1] = Abxn[p] + Bbv(tn,p)a

where v(t, ) is the response of Z(s) to i(t) evaluated at time ¢ = t,,. A
fundamental result in BTCI theory (4] is that we can write

Xn[p + 1] = Apxn[p] + Bbv(t;_l,p) + by, (5)

where t; , denotes the time n > 0 seconds infinitesimally before the nth
bunch’s pth arrival [see Eq. (4)]. This result says that a bunch’s self-
induced perturbation as it interacts with the cavity is constant; the effects
of previous (bunches’) interactions are reflected in v(t,_; ;).



To summarize, the BCTT consists of the continuous time, cavity-dynamics
model Eq. (1), and NV discrete time, bunch-dynamics models Eq. (5). Each
nth bunch model interacts with the cavity at times tn,p, which themselves are
state dependent, specifically 8,[p] dependent. Thus, although the constituent
subsystems are linear, the overall BTCI is nonlinear (of order infinity) owing
to the fact that the bunch phases appear as functional time arguments.

2.1 Modal Analysis

We sketch here the modal analysis approach as traditionally applied to the
BTCI problem. Our focus is on control-theoretic aspects, namely, that modal
analysis can lead to a nonminimal realization, and that frequency-domain-
based control imposes actuator bandwidth constraints. Note that it is pos-
sible to obtain the system eigenmodes also using our state-space model de-
veloped below.

The discrete-time bunch Eq. (5) is approximated as a continuous-time
differential equation n =1,..., N,

O, (t) + alén(t) + agbn(t) = brva(t), (6)

where all coefficients arise from the matrices of Eq. (5), and v, (t) represents
the voltage seen by the nth bunch. The latter is a function of all NV bunches’
phases 81, ...,0n up until time ¢. Specifically,

N
vp(t) = Z Zz(pT+Tn T+ 70(t) ~ Tt~ pT +Th = Twn)), (7)

m=1 p

with 7,(¢) = 6,(t)/w.. The first-order solution of Eq. (6) is obtained by
taking its Fourier transform and keeping only the first two moments with
respect to the 7 arguments.

This approach is tractable under the following symmetry assumption:
Sp =Ty - Th—y = T/N,Vn, i.e., the nominal distance between bunches is
fixed. To force this condition to hold, one must append phantom bunches
to the true system, viz., bunches of zero charge as proposed in [5]. For
example, the N = 2, q; = g2 = q case, in which 75, = T/3 (Ty = 0), is
modeled under modal analysis as an N = 3 case in which T3 = 27'/3 and
gz = 0. Thus modal analysis of an asymmetric case leads to a nonminimal
realization, as more bunch models [Egs. (6) or (5)] have to be appended to
the overall system.



The quantity of interest in this modal analysis is the voltage-induced

growth rate, which for mode [,/ =0,..., N — | is proportional to
o8}
Z (kwe + lwo + Vag) Z (kw + lw, + /ag),
k=—

with w, = 27/T. Thus one can damp a given mode by feeding back the
cavity voltage signal through the generator, using a comb filter tuned to
we + lw, + /ag as a controller [1]. However, the viability of such a feedback
scheme is limited to the bandwidth of the generator. E.g., it is not possible
to damp mode [ = 1 if the generator bandwidth is on the order of w. + lws,.

3 A State-Space Formulation

Our state-space, time-domain formulation has been inspired by the sampling
jitter problem [6], except that in the present case the jitter is itself a state.
We now obtain a linear model as a first-order approximation to the full
system. We also make use of the Floquet Theorem (7], under which a linear
periodic system’s eigenvalues are determined by its behavior over one period
only. This means that to evaluate growth rates (eigenvalues) we need only
evaluate the eigenvaules of the one-period system matrix.

Describe the cavity in an equivalent state-space realization (A, B¢, C.),
with state vector x¢(t), input i(¢), and ouput v(t). Thus

xc(t) = Acxc(t) + Bei(t)
v(t) = Cexclt).

Thus {after dropping the constant by,) Eq. (5) is rewritten as
Xa[p + 1] = Apx,[p] + BchxC(t;_l’p). (8)

We seek to evaluate the BTCI at fized ttme instants, specifically at times
pT + Ty, and not at the (variable) interaction times t, ,.

As in section 2, for convenience in indexing, we let {9, = txn p-1, g0 1=
gn, and Ty := T — Txn. Recall that we have also defined the the bunch
spacing Sy, := T, — T,,—1. Thus for each nth bunch

_ tnp

— ; -t AC —
xe(ts,) = elbitiss) xc(tn_lyp)-'}-/t

elbnp=OAB 4(t)dt

n—1l,p

) - et A g (9)

A N



Using the invertible map e*A<, define
xc(t;’p) = e(Tﬂ[p]"r))Ac)‘(c<pT 4+ Tn) (10)

as the cavity state just before the nth bunch’s pth arrival propogated to the
convenient fized time pT + T,. Restating Eq. (9) we have

X (T +Tyn) = esnAcic(PT +Tho1) — Qn—le(snﬁTn_l(p]_n)Ach- (11)
The bunch model of Eq. (5) is similarly rewritten as
Xn[p + 1] = ApXn[p] + BpCeelSntmlPl-mAck (5T + T, _1). (12)

Taken together, the rewritten cavity and bunch subsystems [Egs. (11) and
12, respectively] are nonlinear in the state 8, /w.. They can be linearized
by taking the first two terms in the matrix exponential (when this is valid).
However, given that @ > 1, i.e., that the cavity is a bandlimited resonator,
and that we are concerned with a small signal model, i.e., 7 < 1, a better
procedure is to cast the cavity system in terms of the in-phase and quadra-
ture (I and Q) responses [8] about a “carrier” radian frequency w.. We
impose the easily satisfied conditions that w, falls in the bandwidth of the
cavity and that w.T, mod 27 = 0,V¥n. This method yields a baseband BTCI
model as developed in the next three paragraphs.

The inverse transform z(¢) of Eq. (1) can be written as a sum of or-
thogonal impulse responses, which in turn can be written in state-space
equivalents:

z(t) = z(t) coswet — zq(t) sinwct
Cie"1 B cos wet — CqeeBq sinwet

} { etA1 cos wit B

—etAQsinw,t ] [ Bg j] - (13)

The in-phase and quadrature state-space models (A, By, C1) and (Ag, Bg, Cq)
have states x; and xq, respectively.
Our assumptions and conditions yield:
elSn=TnlPl-mA:  oog we(Sn — Talp) — 1) eSnhl (14)
eSn=mPI=MAQ sin g (S, — T[] — 1) & €Al ). (15)

i

[ G Cq

Q

This is because: (i) e™®1 ~ I (and similarly for Ag), since the cavity’s
baseband dynamics are slow (Q > 1); and (ii) sinw(Sn— 7 [p]—7) = —6,[p]
and cosw.(Sn — 7x[p] — 1) &~ 1, given our assumptions on w,. Similarly,

Ccic<pT + Tn) - CIX{(pT + Tn) + CQXQ(pT + Tn): (16)



i.e., the voltage at the fixed instants p7" + T, can be evaluated just as well
using the I and Q baseband models.

Thus we can replace the cavity-model dynamics of Eq. (11) with (or-
thogonal) I and Q models. In fact, under Eq. (14) the I model is uncoupled
to the bunches altogether and can be neglected in any dynamics analysis
(cf. the hueristic arguments for this in [9]). Thus we replace the model of
Eq. (11) with

xQET +T) = e Axq(pT + Tpy) = gooselS T Pl=MAaBg
~ esnAQxQ(pT + Tn—-l) - Qn—19n~1[P}eSnAQBQ, (17)

and modify Eq. (12) as

xnp+1] = Apxy[p] + ByCqelSrtmPl-mAaxq (T + T;,_))
AbanD] + BbCQeS"AQXQ(pT + Tn—l); (18)

Pl

thus obtaining a linear model.

As stated, the BTCI model is in fact an N-fold switched system (see [10]),
but it is also periodic. Thus, to evaluate stability we need only compute
the eigenvalues of the single-period system matrix. For convenience define
Cb,n := [—¢n, 0] (output matrix for the bunch system), and

K, = BqCpa
H := ByCq
E,m = C(T" _Tm)AQ.

Let x[p] = [x§(»T). x{ [p], -+, x~[Tp]], which behaves according to

x[p + 1] = Ax[p]. (19)
where
A Ap
A= , 20
Ag AQQ]‘ (20)
with
A11 = eTAQ
A = [T-TAQK, © ... ! oT-TvAeky |
Hel14q
A‘21 = :
HelvAQ



Ay A
HE; K, A,
Ay = HE; K, HE;;K, A,
HEN)IKI HENQKQ HEN,N—lKN—l Abd

From the A-matrix one can compute the growth rates/stability of the
system under any arbitrary bunch spacing {7} and bunch charges {g,}.
The normal bunch eigenmodes are governed by Agy. Unlike the modal
analysis of section 2.1, no phantom bunches need be appended. However,
note that for large N, say on the order of 100, the system matrix may be
il conditioned. It is also noted that there is one known reference in which
a state-space formulation is attempted [11]. However, that model is limited
to the trivial case of N =1 and is based effectively on modal analysis.

3.1 Control

The form of the controlled BTCI model depends on the bandwidth of the
actuator, i.e., the generator. The simplest form is

x[p + 1] Ax[p] + Bulp]
ylp] = Cx[p], (21)

where A has been defined in Eq. (20). Implied in this model is that the con-
trol input (i.e., the quadrature modulation of the generator’s rf) is stepped
no fewer than every T seconds, i.e., with each period. If the generator band-
width is wide enough and it is desired to update its ouput at even faster
rates, then the period-wise autonomous system model of Eq. (19) must be
reformulated to account for interperiod state changes (a switched system
formulation results). We address the more conservative model of Eq. (21).
Since only the cavity is actuated, the input matrix is given by

B
Bz[ OQ]. (22)

In practice, the cavity output (voltage) is measurable, as is some bunch phase
(and/or energy) information. Depending on the number and bandwidth of
the sensors, this may be the average bunch phase or even the bunch phase
of all vV bunches. In any case, the output matrix is of the form

_1Cq O
- % el

9



where Cp scales the 2N bunch states. If the system is controllable and
observable, then an observer can be designed to allow for effective full-state
feedback (Ch. 29 of [7]).

4 Simulation Results

In order to demonstrate the utility of the new formulation we consider the
following N = 2-bunch example (inspired by (12]). The system period is
T = 3.68F — 06, and the period-wise matrices given by

—591 —1.69
Ag = 1.0}35[ 5 o o }
[ 2.62E5
By - | 202 ]
Cq = [0 —190e5 ]
A _ | 100 0036
b = | —0.047 0.998
[ 0
By = O.610E-4]
C, = [0.122153-3 o].

We consider an asymmetric bunch pattern given by T} = 0,7, = T/3, with
q1 = g2 = 0.129E — 5. The system eigenvalues are

A{A) = {0.3337 £ 0.04497,0.9991 + 0.0403:, 0.9992 + 0.04101},

and since the modulus of one pair is greater than unity, the system is un-
stable.

It is assumed that the generator can update its output each 7', but is
bandlimited such that it cannot update on a bunch-by-bunch (T3 or T —T5)
basis. These assumptions are realistic. The pair (A,B) is found to be
controllable [see Eq. (22)]. We assume that the average phase across the
two bunches ((7; + 72)/2) is also measurable. Thus,

Cq 0
C:{ 0 [05 0 05 O]]J‘

10



and the pair (A, C) is found to be observable, allowing for effective full-state
feedback. We choose the desired closed-loop eigenvalues to be

A(A — BK) = {0.3400 £ 0.04004,0.9990 + 0.0403i,0.9991 + 0.0405¢},

whose moduli are less than unity.

Some simulation results are presented in Figure 2. A 1000-V square pulse
is applied to the second bunch’s second state (energy deviation €;) for 1007
seconds. That bunch’s phase (6;) is open-loop unstable, but is stabilized
with our feedback. Note that the frequency-domain-based control design
does damp bunch oscillations in the trival N = 1 case, but is not realizable in
the (symmetric or asymmetric) N = 2 case because of our assumed generator
update-time contraint, as it requires filtering at frequencies greater than
1/T.

x107°
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Figure 2: Open-loop (times 10, in green) and closed-loop (in blue) bunch
phases.
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5 Summary and Conclusion

A linear time-domain model has been derived for the bunch-train cavity
interaction problem. This general formulation does not require system sym-
metry and thereby leads to a model with no phantom states. The model
is currently being utilized to predict stability for arbitrary bunch spacings
in the Advanced Photon Source at Argonne National Laboratory (Illinois).
The final version of this paper will report on some of these results.

The BTCI control problem motivated this work: state-space and time-
domain methods have not been developed for this problem, and this lack is
seen in the ad-hoc manner in which practical control systems are designed.
An example is the paper (1], in which many loops are nested about the
plant. The new formulation presented herein answers this need. It is also
applicable to general switched, quasiperiodic systems that undergo jitter.
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